Complexity Issues and Randomization Strategies in Frank-Wolfe Algorithms for Machine Learning

نویسندگان

  • Emanuele Frandi
  • Ricardo Ñanculef
  • Johan A. K. Suykens
چکیده

Frank-Wolfe algorithms for convex minimization have recently gained considerable attention from the Optimization and Machine Learning communities, as their properties make them a suitable choice in a variety of applications. However, as each iteration requires to optimize a linear model, a clever implementation is crucial to make such algorithms viable on large-scale datasets. For this purpose, approximation strategies based on a random sampling have been proposed by several researchers. In this work, we perform an experimental study on the effectiveness of these techniques, analyze possible alternatives and provide some guidelines based on our results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Infinite RBMs with Frank-Wolfe

In this work, we propose an infinite restricted Boltzmann machine (RBM), whose maximum likelihood estimation (MLE) corresponds to a constrained convex optimization. We consider the Frank-Wolfe algorithm to solve the program, which provides a sparse solution that can be interpreted as inserting a hidden unit at each iteration, so that the optimization process takes the form of a sequence of fini...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

A Deterministic Nonsmooth Frank Wolfe Algorithm with Coreset Guarantees

We present a new Frank-Wolfe (FW) type algorithm that is applicable to minimization problems with a nonsmooth convex objective. We provide convergence bounds and show that the scheme yields so-called coreset results for various Machine Learning problems including 1-median, Balanced Development, Sparse PCA, Graph Cuts, and the `1-norm-regularized Support Vector Machine (SVM) among others. This m...

متن کامل

Training Support Vector Machines Using Frank-Wolfe Optimization Methods

Training a Support Vector Machine (SVM) requires the solution of a quadratic programming problem (QP) whose computational complexity becomes prohibitively expensive for large scale datasets. Traditional optimization methods cannot be directly applied in these cases, mainly due to memory restrictions. By adopting a slightly different objective function and under mild conditions on the kernel use...

متن کامل

Fast Stochastic Frank-Wolfe Algorithms for Nonlinear SVMs

The high computational cost of nonlinear support vector machines has limited their usability for large-scale problems. We propose two novel stochastic algorithms to tackle this problem. These algorithms are based on a simple and classic optimization method: the Frank-Wolfe method, which is known to be fast for problems with a large number of linear constraints. Formulating the nonlinear SVM pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1410.4062  شماره 

صفحات  -

تاریخ انتشار 2014